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Ecological studies investigating the effects of artificial light at night
(ALAN) have primarily focused on single or a few species, and seldom on
community-level dynamics. As ALAN is a potential cause of insect and
biodiversity declines, community-level perspectives are essential. We empiri-
cally tested the hypothesis that moth species differentially respond to ALAN
and that these responses can cause shifts in community composition. We
sampled moths from prairie fragments in Colorado, USA. We tested whether
local light sources, sky glow, site area and/or vegetation affected moth
community diversity. We found that increased sky glow decreased moth
abundance and species richness and shifted community composition.
Increased sky glow shifted moth community composition when light and
bait traps were combined; notably this result appears to be driven entirely
by moths sampled at bait traps, which is an unbiased sampling technique.
Our results show that ALAN has significant effects on moth communities
and that local light sources have contrasting effects on moth community com-
position compared to sky glow. It is imperative that we better understand the
contrasting effects of types of ALAN to comprehend the overall impacts of
light pollution on biodiversity declines.

This article is part of the theme issue ‘Light pollution in complex
ecological systems’.
1. Introduction
More than half of the world’s population lives in urban or suburban areas and
this development has caused over 20% of the terrestrial Earth’s night skies to be
affected by anthropogenic light [1,2]. Importantly, the effects of light pollution,
especially sky glow, have been found to extend over long distances even outside
urban areas [3]. At night, artificial lights function to extend human activities
and promote safety [4]. However, artificial light at night (ALAN) also has con-
sequential impacts on species within and adjacent to urban areas [5,6]. ALAN
has been shown to influence behaviours of many vertebrates including bats,
birds, frogs, humans and turtles (e.g. [7–22]) and affect the physiology and
development of plants (e.g. [23–25]). Studies examining the impacts of ALAN
have often focused on single or a few species but recently there have been
calls in the literature for studies to investigate how the effects of ALAN vary
more broadly across taxa, and how it may influence population dynamics
and the structure of communities [5,11,26–36].

Studies of community-level responses owing to ALAN are uncommon com-
pared to studies of single species [37–39], yet community composition is likely
to be altered given that species vary in their responses to lights (e.g. [22,40–42]).
Moreover, ALAN comes in two forms which may differentially impact commu-
nity responses—light from a point source (e.g. streetlights) and sky glow, which
is a measure of how bright objects appear or how much light is reflected off an
object. Most studies of ALAN study only point sources of light or do not tease
apart the effects of point sources of light from sky glow. However, sky glow
has been shown to affect insect behaviour; for example, Foster et al. [43]
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demonstrated that sky glow negatively affected dung beetle
orientation behaviours. Changes in behaviours important to
fitness may negatively affect population dynamics. Firebaugh
& Haynes [44] also showed that ALAN can act as a demo-
graphic trap for populations wherein immigration exceeds
emigration to light-polluted sites. If ALAN has significant
effects on individual species by creating demographic traps
for species attracted to lights, it follows that it may have
important implications for community dynamics by altering
community composition.

One group of organisms that are well known for their
response to artificial lights is moths, and ALAN has been
suggested as one of the potential causes for declines in
their species richness and abundance [6,45–47]. Moth species
and families vary in their degree of attraction to light [48,49].
ALAN can have negative impacts on moth individuals
[50–52], populations [49], and there is evidence that it may
lead to evolutionary change in the form of reduced photo-
taxis [53]. Grenis & Murphy [51] found that ALAN
negatively affected the performance of a lepidopteran herbi-
vore both directly and indirectly via altered host plant
quality. Furthermore, moths found near artificial lights can
be depredated by insectivores [20] and suffer from reduced
vision capabilities [54]. There are also potential negative
impacts yet to be tested, like fitness costs associated with
light attraction; moths circling lights may have reduced
energy stores or be unable to find suitable oviposition sites,
resulting in fewer, smaller larvae under streetlights. However,
whether and to what degree the individual and species-level
responses and effects of ALAN cascade to affect the structure
of an entire terrestrial community has been understudied.

Moth community responses to ALAN, if present, would
occur at large spatial scales, and thus it is important to simul-
taneously account for other landscape factors that could drive
community responses. A few studies have investigated how
moth community abundance and species richness are affected
by habitat fragmentation (e.g. [55–58]), but all of these studies
occurred within forest fragments surrounded by agricultural
fields, not urban development that introduces new and differ-
ent pressures, like ALAN (see Merckx & Van Dyck [59] for
evidence that urbanization in general affects moth diversity).
These fragmentation studies within agricultural areas found
that moth communities respond predictably to plant richness
[56,58], but interestingly do not follow the typical species-area
pattern commonly found for other organisms. Abundance
and species richness both generally decline with decreases
in habitat size for most organisms [60]; indeed, many other
species that were tested at some of our same urban study sites
follow the predicted declines in abundance and richness
with decreases in habitat size (e.g. butterflies [61], bees [62]
and grasshoppers [63]). However, whether moth abundance
and richness are unaffected by habitat size in urban systems,
as was found in the fragmentation studies in agricultural sys-
tems, or whether changes in habitat area influence abundance
and species richness patterns of moths in urban ecosystems is
unknown. Species richness patterns of moths may also be influ-
enced by vegetation diversity, since most herbivorous insects
are dietary specialists and therefore depend heavily on the
types of plants present [64,65]. Previous studies on moths
have found that increases in plant diversity within a habitat
patch positively affect moth species richness [55,58], but plant
diversity is not always dependent on patch size, particularly
in urban and suburban landscapes [62,66,67].
Here, we empirically test the hypothesis that ALAN can
cause shifts in community composition of moth species that
are differentially impacted by their attraction to light. Specifi-
cally, we test whether ALAN affects communities of moths
inhabiting fragmented prairie patches within an urban
matrix. Many ecological studies test ALAN as a categorical
variable (light or no light) or measure only the brightness
of a point source of light, but insects are likely affected by
both point sources and sky glow. We therefore measure
ALAN as continuous measures of both local light sources
and sky glow, and these two metrics allow us to explore
the potentially differential effects of types of ALAN on the
abundance and richness of moth species in an urban habitat.
Based on the previous literature, we hypothesized that both
types of ALAN (local light sources and sky glow) would
have negative effects on the abundance and species richness
of moths, decreasing overall diversity. We also test whether
habitat size and vegetation affect moth community diversity
as these variables have been shown to be important drivers of
community diversity in other systems. Most species follow
the species-area pattern in which species abundance and
richness increase with greater habitat area [60]; however, pre-
vious studies on moths have found that they respond to
changes in the plant community, but not to changes in habitat
area [56,58]. We therefore hypothesized that moth commu-
nity diversity would be unaffected by habitat size and
positively affected by vegetation. Ours is, to our knowledge,
the first study to test the effects of both local light sources and
sky glow on an entire taxonomic community.
2. Methods
(a) Study sites
We surveyed moth communities at 23 prairie fragments along
the Front Range of Colorado, USA. We selected sites in four
general areas in the Denver-metro area across five counties (elec-
tronic supplementary material, table S1). We chose sites bordered
by at least 75% residential/suburban development. The native
ecosystem at all of the sites is shortgrass steppe with infrequent
patches of tallgrass and native trees along riparian and mesic
areas. To ensure that sites were not dispersed unequally by
size (e.g. all the large sites in one county) and to have a represen-
tative sample of habitat sizes, we designed our sampling scheme
such that each county contained at least five fragments with one
small site (less than 5 ha), three to five medium sites (5–15 ha)
and one large site (greater than 15 ha). Overall, site areas
ranged between 2.4 and 73.7 ha. We determined site area using
digital data from city and county records.
(b) Artificial light measures
At the time of our study, all streetlights in our study areas were
high-pressure sodium lights. We measured sky glow to the 0.01
magnitudes per square arcsecond using a Sky Quality Meter
(Unihedron, Grimsby, Ontario, Canada; range of measures =
11.20–19.99) pointed at zenith to measure sky brightness at
zenith (converted later to the SI unit cd m−2); this is a measure of
the amount of light coming into the sensor from a narrow angle
of sky directly overhead. For a wider angle of measure that
includes light from local light sources around the perimeter of
the site, we used an Extech EA33 Luxmeter measured to the near-
est 0.01 lux (Extech Instruments Corporation, Nashua, NH, USA;
range or measures = 0.1–12.82), which allowed us to measure
light pollution in a full 360° around each point. Although lux is a
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Figure 1. Layout of ground cover survey and point measurements of light
intensity at a theoretical site. The long double-headed arrows are the
north-south and east-west transects. Open circles represent the transect
around each trap location; the central open circle surrounds the bait trap
location (B) and the two other open circles surround the light trap locations
(L). We used a point-line intercept method to quantify ground cover at each
site. Dark circles indicate the focal spot for light readings along the edges and
15 m into the patch (north, east, south, west) as well as at the centre
locations. The surrounding dashed circles show the position of additional
light readings (10 m from focal location along the edge and 15 m into
the patch).
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measure of human photopic vision and does not necessarily
measure moth photopic perception, we use it as our light measure
because this is the measure used by city planners and land
managers to make decisions about the amount of artificial
light illuminating a given area when designing lighting systems
(following [68,69]). To measure relative light levels across
the entire site, we measured ALAN at 29 positions within each
site, with 24 positions along the edge and five positions in the
centre, and we averaged them together for a site mean (figure 1).
All of our light measurements were taken without the light traps
(see below) in the fields, prior to our experiments. We took
measurements after astronomical twilight on clear nights within
3 days before and after the new moon between the hours of
20.00 and 2.00 to reduce the influence of natural moonlight on
our measurements.
(c) Lepidoptera survey methods
To characterize the moth communities at each site, we sampled
moths on nights between 20.00 and 2.00 without rain or wind
and with less than 1 h of natural moonlight during five collection
periods over the summers of 2011 and 2012. However, we did not
sample all sites in all collections owing to weather, permitting,
and safety (electronic supplementary material, table S1). We
sampled sites haphazardly based on county location so that mul-
tiple sites could be visited in the same night. To sample the
abundance and diversity of moth species attracted to lights, we
used two Universal Black Light Traps (Bioquip Products,
Rancho Dominguez, CA, USA) to collect moths during each
survey; these light traps sample local moth communities [48].
However, ALAN can influence the effectiveness of light traps
in catching moths [70]. Thus, we also sampled using bait traps,
where the efficiency of the trap has not been linked to ALAN
[71]. We used a pop-up butterfly bait trap (Bioquip Products,
Rancho Dominguez, CA, USA) provisioned with a beer-based
bait [72] and hung from a standing frame [73]. To minimize
the degree to which all traps competed with nearby streetlights,
we placed each trap at least 15 m from the site edge (figure 1).
During three of our collection periods (July and August of 2011
and June of 2012), we visited traps every other hour and emptied
them so that we could improve our rarefaction curves for esti-
mates of species richness (see below). After collection, we froze
and stored all the collections in the laboratory until we could
count, pin, and identify macromoths to species with the
assistance of local taxonomic experts (D. Bettman and
C. Harp). We vouchered specimens in the zoology collections
at the Denver Museum of Nature and Science.

(d) Vegetation measures
Previous studies have shown that moth communities are depen-
dent on the type of vegetation present [56,58,74]. Given the
difficulty in taxonomically identifying prairie grasses to species
when not in flower, we measured the proportion of the ground
covered by grasses, forbs and bare ground every 0.3 m across
five point-intercept line transects at each site as a proxy for
plant diversity. The transects we used to estimate ground cover
plant types spanned the longest north-south and east-west dis-
tances in each site (figure 1). We also measured ground cover
at a 3 m radius (18.85 m circumference) surrounding each trap
location to account for vegetation within trap attraction range
[75] (figure 1). To account for differences in site area and
shape, we used proportion ground cover to standardize
measurements for analyses.

(e) Statistical analyses
To evaluate differences in species richness and abundance across
sites, we used four separate multiple regressions; for moths
caught at light traps, we did one multiple regression for abun-
dance and one for species richness, and then for moths caught
at bait traps, we similarly did one multiple regression for abun-
dance and one for species richness. Each of these four multiple
regressions had local light sources, sky glow, site area, and pro-
portion grass, as independent variables because these variables
were not found to be correlated with each other. Initially, we
included both proportion grass and proportion forb in the
models, but using correlation values and tolerance, we found
that proportion grass and proportion forb were highly correlated
at 0.97, so we dropped proportion forb from the analyses and
only used proportion grass because many of our species are
grass feeders. We tested for normality and equality of variances
for all independent variables and to meet the normality assump-
tions we log transformed site area and square root transformed
local light sources and sky glow. Owing to the well-established
relationship between species abundance and richness, we rare-
fied by abundance to estimate species richness; we re-scaled
species richness with sample-based rarefaction curves by indi-
viduals to adjust for differing densities of sampled individuals
across sites [76], but were only able to do this for samples
caught at light traps where we had sufficient sample sizes.
Using ECOSIM 7.0 [77], we constructed individual-based rarefac-
tion curves (1000 iterations) to calculate expected species
richness when we sampled a similar number of individuals
from light traps at each site. We scaled our estimate of species
richness to the lowest number of individuals caught at a
site (n = 13). Thus, for light traps, we used another multiple
regression for estimated macromoth species richness that used
the same independent variables described for the first four mul-
tiple regressions above. We used JMP v. 11 to perform all five of
the regressions described above (SAS Institute Inc., Cary, NC).
If we did find differences in abundance between light and bait
traps, we wanted to determine whether such differences would
be amplified or diminished based on the overall light conditions
at a site. In other words, moths might not be as attracted to light
traps when there is more light pollution at a site. To examine
whether any differences we found in abundance between light
and bait traps were affected by either the overall sky glow in
an area (cd m−2) or point light sources (lux), we ran a Poisson
regression and compared a full model and reduced models
using a chi-square test in R 4.1.1 [78].

We analysed moth community composition data using non-
metric multidimensional scaling (NMDS), which is a robust
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Figure 2. Impacts of light traps and bait traps on moth community composition. Compositional dissimilarity was based on 176 different moth species (electronic
supplementary material, table S2). Shown is the two-dimensional representation of the moth community found in 128 collections. ANOSIM demonstrates that moth
composition changed in light versus bait traps. Vector analysis (yellow arrow) indicates that differences in moth community composition were correlated with sky
glow. While not significant, the vector for local light sources was included for a comparison with patterns for sky glow. (Online version in colour.)
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ordination technique for community analysis [79–81]. We used
NMDS to create a dissimilarity matrix among the sites with the
Bray–Curtis dissimilarity coefficient [82]. Using stress levels
obtained by fitting the dissimilarities to distance, we chose
a two-dimensional solution as the best representation of the dis-
similarities among sites. We tested for differences in community
composition among light and bait traps using analysis of simi-
larity (ANOSIM, [83]). We then performed vector analysis to
determine the maximum correlation between site characteristics
(site area, local light sources measured as lux, sky glow
measured as cd m−2, proportion grass, and proportion forb)
and the configuration of points (i.e. the moth community at
each site) in the ordination. We determined significance using
1000 random permutations of the data to determine if the
observed vector fit was significantly different than that owing
to chance alone [81,84]. Since light and bait traps might be differ-
entially affected by site characteristics, we also performed NMDS
ordination and vector analysis on data from light traps (bait traps
excluded) and bait traps (light traps excluded). We performed
NMDS and subsequent ANOSIM and vector analysis using
DECODA (database for ecological community data [85]) and
PRIMER-7 [86].
3. Results
(a) Community composition
We collected 3107 individual macromoths and identified 182
unique species in the 82 collections from 23 sites (electronic
supplementary material, tables S1 and S2). Using ANOSIM,
we found that moth community composition differed
among light and bait traps (ANOSIM R = 0.2574, p = 0.0001;
figure 2). There were only eight species (each with only a
single individual) found exclusively at bait traps, while there
were 126 species representing 998 individuals that were
found exclusively at light samples. We found 48 species that
were shared between light and bait samples. Importantly,
vector analysis demonstrated that moth community compo-
sition changed according to light characteristics. When we
examined both light and bait traps together, we found a signifi-
cant correlation between sky glow and moth community
composition (vector max R = 0.2505, p = 0.016), and this
significant relationship seems to have been driven by results
from our bait traps (see below). Notably, in the combined data-
set, we did not find a correlation between moth community
composition and any other site attributes: area (vector max
R = 0.155, p = 0.205), local light sources (measured as lux,
vector max R = 0.0424, p = 0.88), proportion grass (vector max
R = 0.0766, p = 0.693), or proportion forb (vector max R =
0.0579, p = 0.802). This pattern was driven by community-
wide responses; the negative impacts of sky glow on moth
abundance could be seen formanyof themost common species
and were particularly strong for Apantesis phalerata (the har-
nessed tiger moth) and Leucania multilinea (the many-lined
wainscot). To determine whether our significant results from
our combined dataset were driven by moths captured at the
light or bait traps, we examined light and bait traps separately
and found that sky glow and lux differentially impacted moth
communities depending on whether samples were collected
from light or bait traps. Moth community composition
at light traps was impacted by lux (vector max R = 0.3752,
p = 0.001) and proportion forb (vector max R = 0.2973,
p = 0.032), but sky glow did not impact moth community



Table 1. Multiple regressions of area, proportion grass, local point sources (lux), and sky glow (cd m−2) on macromoth abundance, individual-based estimates
of species richness, and estimates of total species richness for moths caught at light and bait traps. (Each dependent variable (macromoth abundance,
macromoth species richness, and estimated macromoth species richness) represents a separate model for both light and bait traps. Estimated macromoth species
richness is calculated only for moths caught at light traps where there were sufficient numbers to estimate species richness. Predictor variables were
independent and were transformed to meet the normality assumption (see methods). Italicized predictor variables are significant.)

dependent variables predictor variables d.f. F-stat p-value coefficient (s.e.)

light traps

macromoth abundance area 1,18 0.96 0.33 −31.3 (31.9)
proportion grass 1,18 0.59 0.45 −51.7 (67.0)
local point sources 1,18 4.43 0.0495 97.2 (46.1)

sky glow 1,18 7.12 0.0157 −1741.9 (652.9)

macromoth species richness area 1,18 0.86 0.37 −6.3 (6.8)
proportion grass 1,18 0.002 0.96 0.7 (14.2)

local point sources 1,18 11.83 0.0029 33.7 (9.8)

sky glow 1,18 12.62 0.0023 −492.5 (138.6)

estimated macromoth species richness area 1,18 1.79 0.20 −0.8 (0.6)
proportion grass 1,18 0.01 0.93 −0.1 (1.3)
local point sources 1,18 5.28 0.0337 2.0 (0.9)

sky glow 1,18 4.77 0.0424 −26.8 (12.3)

bait traps

macromoth abundance area 1,18 0.42 0.53 12.6 (19.6)

proportion grass 1,18 2.12 0.16 60.0 (41.2)

local point sources 1,18 0.37 0.55 17.4 (28.4)

sky glow 1,18 1.82 0.19 −541.2 (401.6)
macromoth species richness area 1,18 0.02 0.90 0.3 (2.5)

proportion grass 1,18 0.47 0.50 3.6 (5.2)

local point sources 1,18 0.83 0.37 3.3 (3.6)

sky glow 1,18 2.16 0.16 −74.5 (50.7)
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composition at light traps (vector max R = 0.0636, p = 0.871).
Conversely, moth community composition at bait traps was
not affected by lux (vector max R = 0.1751, p = 0.451), but was
instead marginally affected by sky glow (vector max R =
0.3074, p = 0.083). Importantly, for the combined data, sky
glow was the only factor impacting the change in moth com-
munity composition, and this trend seems to be driven by
the bait traps and not the light traps. Finally, area and pro-
portion grass did not affect community composition when
we examined moth communities from the light and bait
traps separately.
(b) Species abundance and richness
The multiple regression for light traps using species richness
was the only significant overall model (F4,18 = 4.06, p = 0.02;
table 1). Our multiple regressions for light traps using abun-
dance and estimated species richness were not significant
(abundance: F4,18 = 2.18, p = 0.11; estimated species richness:
F4,18 = 1.82, p = 0.17) nor were the multiple regressions for
bait traps using abundance and species richness (abundance:
F4,18 = 1.44, p = 0.26; richness: F4,18 = 0.79, p = 0.54). While our
overall models were often not significant, and in all five
multiple regressions there was no relationship between
either site size or proportion grass on moth abundance,
richness, or estimated richness, coefficients related to ALAN
in the models were significant (table 1). In all three multiple
regression analyses using data from our light traps, we found
greater moth abundance (figure 3a) and species richness
(figure 4a) with increasing local light sources (lux), but
increased sky glow (cd m−2) negatively affected both moth
abundance (figure 3c) and richness (figure 4c) (table 1).
Notably, moths that were found only at light traps (not
bait) were not solely responsible for this relationship between
abundance and lux (R2 = 0.028, p = 0.124), it was the combi-
nation of moths found only at light traps, or both light and
bait traps (only eight species were found exclusively at bait
traps and only a single individual of each of these species
was sampled). For the multiple regression analyses using
data from the bait traps, moth abundance (figure 3b,d) and
species richness (figure 4b,d ) were not significantly related
to local point sources or sky glow, but followed the same pat-
terns as the light trap data; this is probably because our
sample sizes for the bait traps were much smaller than for
our light traps. Moreover, when we examined abundance pat-
terns for species that were shared between light and bait traps
using our Poisson regression, we found that the contrast in
abundance between the two types of traps was greatest
when overall levels of sky glow at a site (cd m−2) were lower
(deviance =−40.344, p = 2.13 × 10−10). Thus, when overall
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Figure 4. Partial regression plots of moth species richness versus lux (point sources of light; (a), (b)) or cd m−2 (sky glow; (c), (d )) (both square root transformed).
For lux, we first performed a regression between moth species richness and all predictor variables except lux (cd m−2, habitat size, and proportion grass), saved the
residuals and then graphed the residuals against lux. For cd m−2, we first performed a regression between moth species richness and all predictor variables except
cd m−2 (lux, habitat size, and proportion grass), saved the residuals and then graphed the residuals against cd m−2. Points represent individual sites and the lines of
best fit are shown with their respective R2 values.
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levels of sky glow were higher at a site, there was less of a
difference between light and bait traps. However, local light
sources (lux) had no effect on the abundance of shared species
(deviance =−0.10459, p = 0.7464).
ietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220365
4. Discussion
Light pollution has previously been shown to affect individ-
ual species, and here we show that ALAN can also
significantly alter composition of an entire taxonomic com-
munity of nocturnal Lepidoptera. Furthermore, we found
that different measures of ALAN (local light sources versus
sky glow) have contrasting effects on community compo-
sition, which has not, to our knowledge, been previously
reported. We found sky glow affected overall moth commu-
nity composition, but this result differed depending on
whether moths were collected from light or bait traps. At
light traps, moth community composition was affected by
local light sources (e.g. streetlights), but not sky glow, but it
is important to recall that local light sources did not have a
significant effect on community composition when all
samples were considered together. Conversely, moth commu-
nity composition at the bait traps was marginally impacted
by sky glow, and not impacted at all by local light sources,
yet sky glow was the only factor that drove community com-
position when all samples were considered together. These
results are important because ALAN can influence the effec-
tiveness of light traps in catching moths [70], but the
efficiency of bait traps is not linked to ALAN [71]. Because
using light traps to examine the impacts of ALAN on moth
communities can be problematic, it is also imperative that
future studies use unbiased trapping methods such as bait
traps. Our study found that moth communities attracted to
light traps were compositionally different from those found
at bait traps, and two different aspects of ALAN (local light
sources and sky glow) had completely opposite effects on
moth communities found at light and bait traps.

There are several explanations for these patterns. In our
study, areas with increased sky glow received indirect light
because they were adjacent to areas with high numbers
of artificial lights but did not actually contain as many of
these point sources of light. These areas may have suffered
decreased diversity because indirect light at these sites may
make moths more visible to predators or disrupt circadian
development and reproductive behaviours, with cascading
effects on reproductive fitness (e.g. [52,87–89]). Interestingly,
a recent study by Wilson et al. [90] found that increased sky
glow had a positive fitness effect in a tightly co-evolved,
specialist plant-pollinator system (yuccas and yucca moths)
where they found increased recruitment and fruit set in
areas of high sky glow. In our study, the shift in community
composition indicates that moth responses to sky glow varied
by species and unlike Wilson et al. [90], most species in
our community-wide analysis did not respond positively.
Our finding illustrates that the impact of ALAN on moths
is not simply at the scale of an individual streetlight, but
that the indirect effects of these point sources of light may
extend across a larger spatial scale and have important
conservation implications.

Local light sources (e.g. streetlights) impacted moth com-
munities, but only at light traps where the trapping method
and light source may be confounded [70]. Using our light
trap data, we found a positive relationship between increased
local light sources and moth species richness and abundance,
and these light sources also altered moth community
composition. Macgregor et al. [91] also found an increased
abundance of moths flying aerially near streetlights but
found fewer species at illuminated sites. It is difficult to com-
pare our studies, however, because they did not measure sky
glow, which in our system decreased species richness, similar
to their results, and had a stronger negative effect on moth
diversity than the positive effect of local light sources.
We suggest that point sources of ALAN (e.g. streetlights)
may act as an ecological or demographic trap for moths. Eco-
logical traps are anthropogenic changes in the environment
that cause organisms to make decisions based on formerly
reliable cues that now negatively affect their fitness [92,93].
Under natural regimes, large-scale environmental changes
usually occur over evolutionary time, which allows time for
populations to adapt; however, the term ‘ecological trap’
more appropriately attributes this new maladaptation directly
to human impacts in an ecological time frame that can drasti-
cally reduce population sizes [93–96]. Moths that occur in
brighter areas are subject to higher rates of predation from ver-
tebrate predators like birds and bats [20,50], but how such
predation affects moth community composition and may
create an ecological trap warrants future investigation.

Moth presence in illuminated areas also has consequences
that go beyond increased predation for individual moths
attracted to bright lights. Surviving moths found in areas of
high local light probably continue their life cycle by mating
and ovipositing in these brighter areas. In some habitats, street-
lights actually increase the number of ground-dwelling
predators [37,97] and therefore may increase predation on
larvae; however, our previous research showed that predation
rate for lepidopteran larvae is not affected by streetlights in our
system [98]. Notably, we have also found that ALAN nega-
tively affects larval performance both directly and indirectly
via the altered quality of host plants that grow under street-
lights [51]. Additionally, van Langevelde et al. [49] found
significant population declines in light-attracted moth species
and van Geffen et al. [52] found that ALAN negatively affected
reproductive behaviours and timing of life-history events in
moths. Thus, because artificial lights increase moth diversity
locally but also increase predation rate on moths and decrease
larval performance, there is evidence that ALANmay induce a
demographic trap for nocturnal insects. Given the importance
of many nocturnal Lepidoptera as pollinators, these effects
then also cascade to negatively affect plant fitness [99] via
reduced pollen transport by moths in lit areas [91].

Interestingly, we found no relationships between moth
abundance, species richness, or community composition
with habitat area. The lack of a decline in moth abundance
and species richness with decreases in habitat size is notable
given that this pattern is so commonly found in other systems
and even with other species collected from our same sites
(e.g. grasshoppers, bees, and butterflies, [61–63]). It appears
that moths may be an exception to the species-area rule as
some other studies on moths have also found no relationship
between species abundance/richness and habitat area (but
see [100]), for a discussion of the effects of habitat and
traits; [74]; e.g. [56,58]). For moth species at our sites,
ALAN was the only factor to explain changes in diversity.

Recent reports of an ‘insect apocalypse’ are debated
[101–104] but may suggest that insect taxa are declining
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worldwide [105,106]. Among the many anthropogenic dis-
turbances that have been suggested as contributors, ALAN
is often not considered other than as a part of urbanization
(e.g. [107]), but there are calls in the literature for ALAN to
receive increased attention [5,29,46]. Using results from a
multi-year study which captured 182 unique moth species,
we demonstrate that ALAN from streetlights and other
local light sources has different impacts on communities
than wide ranging, pervasive ALAN across degraded night
skies. Many ecological studies of ALAN only consider local
light sources to be important [8,14,22,41,91,108], but sky
glow can affect insect behaviour and thus also have popu-
lation-level effects [43]. Our findings suggest that sky glow
may have significant effects on insect communities, but
these effects are rarely studied. If we had measured local
light sources alone and sampled only with light traps, we
would have concluded that streetlights positively affect
moth abundance and species richness, which ignores the
indirect negative effects of ALAN on moth species richness,
abundance, and composition in areas adjacent to artificial
lights. Furthermore, when considered with our prior research
on the negative effects of streetlights on larval performance, it
becomes clear that streetlights may act as an ecological trap
and are probably deleterious to moth populations. The attrac-
tion of moths to highly lit areas, paired with the decrease in
moth abundances and richness from increased sky glow,
may play an important role in observed declines in
worldwide moth diversity [45,46].
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