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Abstract. Numerous studies have examined relationships between primary production
and biodiversity at higher trophic levels. However, altered production in plant communities is
often tightly linked with concomitant shifts in diversity and composition, and most studies
have not disentangled the direct effects of production on consumers. Furthermore, when
studies do examine the effects of plant production on animals in terrestrial systems, they are
primarily confined to a subset of taxonomic or functional groups instead of investigating the
responses of the entire community. Using natural monocultures of the salt marsh cordgrass
Spartina alterniflora, we were able to examine the impacts of increased plant production,
independent of changes in plant composition and/or diversity, on the trophic structure,
composition, and diversity of the entire arthropod community. If arthropod species richness
increased with greater plant production, we predicted that it would be driven by: (1) an
increase in the number of rare species, and/or (2) an increase in arthropod abundance. Our
results largely supported our predictions: species richness of herbivores, detritivores,
predators, and parasitoids increased monotonically with increasing levels of plant production,
and the diversity of rare species also increased with plant production. However, rare species
that accounted for this difference were predators, parasitoids, and detritivores, not herbivores.
Herbivore species richness could be simply explained by the relationship between abundance
and diversity. Using nonmetric multidimensional scaling (NMDS) and analysis of similarity
(ANOSIM), we also found significant changes in arthropod species composition with
increasing levels of production. Our findings have important implications in the intertidal salt
marsh, where human activities have increased nitrogen runoff into the marsh, and
demonstrate that such nitrogen inputs cascade to affect community structure, diversity, and
abundance in higher trophic levels.

Key words: allochthonous subsidies; ANOSIM; arthropod community structure; biodiversity;
detritivore; herbivore; NMDS; nutrient runoff; parasitoid; predator; primary production; Spartina
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INTRODUCTION

Since the Industrial Revolution, human activities have

doubled nitrogen pools, with profound consequences for

terrestrial and aquatic ecosystems (Vitousek et al. 1997).

Increases in nutrient availability often lead to increased

biomass of primary producers (Gruner et al. 2008,

Cardinale et al. 2009), which in turn has extended effects

on animal communities (Kirchner 1977, Strauss 1987,

Siemann 1998, Forkner and Hunter 2000, Haddad et al.

2000, Cebrian et al. 2009). Production and diversity may

follow any number of relationships, including a dome-

shaped (unimodal), negative, U-shaped, monotonically

increasing, or no relationship depending on the trophic

level and/or taxonomic group examined (Groner and

Novoplansky 2003). Theory and empirical data have

demonstrated a dome-shaped relationship between

production and diversity in plant communities (Bake-

laar and Odum 1978, Rosenzweig and Abramsky 1993,

Tilman and Pacala 1993, Whittaker and Heegaard 2003,

Gillman and Wright 2006), which suggests that species

interactions under high production constrain diversity

(Leibold 1999). Animal diversity, however, often in-

creases monotonically with production, without a

corresponding decrease at high production levels as

seen in plant communities (Waide et al. 1999, Mittel-

bach et al. 2001).

Several factors may contribute to an increase in

animal consumer diversity (we define species richness

as our measure of diversity) under high plant produc-

tion, including: (1) the persistence of rare species, (2) an

increasing diversity of feeding niches the habitat may

support, (3) density-dependent responses of predator

Manuscript received 16 July 2009; revised 8 March 2010;
accepted 12 March 2010; final version received 9 April 2010.
Corresponding Editor: J. T. Cronin.

6 E-mail: gmw22@georgetown.edu
7 Deceased.

3303



and parasitoid species, and (4) a reduction in herbivore

competition via top-down control from a diverse

predator/parasitoid species pool. First, increases in plant

quality (percentage nitrogen) may allow rare nitrogen-

sensitive species to persist (Mattson 1980, Prestidge and

McNeill 1982, Huberty and Denno 2006a, b). Addition-

ally, higher plant production may increase the popula-

tion growth rate of animal consumers, and populations

with higher abundances would be less prone to

extinction due to disturbance (DeAngelis 1994). Second,

an increase in plant production expands the diversity and

abundance of feeding niches and thus may support

additional consumer species (Hurd et al. 1971, Hurd and

Wolf 1974, Moran 1980, Lawton 1983, Strauss 1987,

Elkinton et al. 1996, Polis and Hurd 1996, Stiling and

Rossi 1997, Polis et al. 1998, Siemann 1998, Forkner and

Hunter 2000, Haddad et al. 2000, Ostfeld and Keesing

2000, Denno et al. 2002, Gratton and Denno 2003).

However, because plant species richness and production

often covary (Stevens et al. 2004, Suding et al. 2005,

Hillebrand et al. 2007), and plant species richness affects

animal diversity independently of changes in production

(Murdoch 1972), it is difficult to determine which of

these factors causes the arthropod community response

when production is experimentally manipulated (Kirch-

ner 1977, Siemann 1998, Haddad et al. 2000, 2001,

Pearson et al. 2008). This is not to say that there are not

important effects of nutrient loading on plant commu-

nity composition and diversity that cascade to higher

trophic levels (see Kirchner 1977, Tilman 1987, Tilman

and Pacala 1993, Siemann 1998, Haddad et al. 2000,

Pearson et al. 2008). However, the way in which food-

web structure is altered through trophic dynamics that

extend solely from enhanced plant production, and not

from changes in plant community composition, has not

yet been investigated for an entire terrestrial arthropod

community. Notably, the pattern of increased animal

diversity with increasing levels of production may be the

result of rare specialist herbivores (and their respective

specialist predators/parasites) responding to an increase

in the abundance and quality of their preferred host

plant species. Yet, alterations in plant production

without a simultaneous change in plant diversity and/

or composition could mean that new species would be

added to the community from a relatively smaller species

pool, which may have negligible effects on overall

arthropod diversity. Without isolating the effects of

plant production, independent of plant diversity, it is

impossible to determine the singular importance of

production for arthropod community structure. Third,

by promoting increased herbivore density, enhanced

plant production and quality often encourage a greater

diversity of predators and parasitoids via density-

dependent responses (Abrams 1995, Siemann 1998).

Last, an increase in predator/parasitoid diversity could

feed back to affect herbivore diversity if: (1) the

dominant herbivores were the most susceptible to

predation/parasitism (Leibold 1996) and/or (2) preda-

tors/parasitoids shift their feeding preferences in accor-

dance with prey abundance (Murdoch 1969).
Here we study the impacts of nutrient inputs on

arthropod community composition and diversity in a
salt marsh that is dominated by a single plant species,

the cordgrass Spartina alterniflora (hereafter Spartina).
By working in natural plant monocultures (Spartina-

dominated wetlands) the cascading effects of nutrient
subsidies on consumers will be driven entirely by
changes in primary production and plant nitrogen, not

plant diversity (see Denno et al. 2002). The use of a
natural monoculture will thereby preclude two explana-

tions for an increase in animal species diversity due to
increased primary production: an increase in plant

species diversity or a change in plant community
composition. If animal species richness increases linearly

with plant production in this natural monoculture, there
are a limited number of hypotheses that would explain

such an increase. Specifically, an increase in plant
production could lead to an increase in animal species

richness due to: (1) the addition of rare species, (2) an
increase in the density of arthropods the habitat is able

to support, or (3) an increase in both rare species and
arthropod density. While these hypotheses are not the

only explanation for the relationship between plant
production and animal consumer diversity in a natural
monoculture, we did not manipulate predator/parasitoid

diversity or abundance, and were therefore not able to
directly test top-down effects on herbivore diversity.

The study presented here is one of a few detailed
assessments of the response of the entire arthropod

community to plant production, not only in the salt
marsh system, but also in the production/diversity

literature (but see Gruner and Taylor 2006). Most
studies that have examined the relationship between

production and diversity have been limited to particular
taxonomic or functional groups (Lightfoot and Whit-

ford 1987, Moon and Stiling 2002, 2003, Gratton and
Denno 2003, Kaspari et al. 2003, Krauss et al. 2007),

which can make the application of theoretical predic-
tions difficult as most theory encompasses species

richness at the level of entire trophic levels or guilds,
not just specific taxa (Tilman 1982, Leibold 1996). Our

study examines the response of 100 arthropod species,
spanning multiple functional and trophic groups, to

plant production in an attempt to reconcile theoretical
predictions with empirical data.

MATERIALS AND METHODS

Study site and organisms

We conducted experimental manipulations at an

expansive salt marsh near Tuckerton, New Jersey,
USA (39830.80 N, 74819.00 W) that is dominated by

natural monocultures of Spartina alterniflora (Denno et
al. 2002). Unlike many salt marshes along the Atlantic

Coast, the Tuckerton site is not bordered by extensive
agricultural fields, golf courses, or urban development,

thereby making this system ideal for testing the effects of
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nutrient inputs on arthropod communities in a marsh

that is not already heavily affected by anthropogenic

nutrient-loading. Additionally, the diverse arthropod

fauna associated with Spartina allows us to examine the

effects of nutrient inputs on multiple trophic levels and

feeding groups (Appendix A). Furthermore, the arthro-

pod community on Spartina has been characterized and

relationships among the dominant species have been

described in previous studies (Appendix A).

Nutrient manipulations

We manipulated nutrient levels using a one-way design

with three levels of nitrogen addition (none, low addition,

high addition) in order to examine the effects of

increasing levels of plant percentage nitrogen and

production on arthropod community structure and

diversity. Our fertilization levels captured the highest

possible fertilization levels found on the marsh; any

further increase in fertilization leads to Spartina dieback

(G. M. Wimp, unpublished data). We established 42 23 2

m plots in the high marsh, and plots were haphazardly

chosen to represent one of the three different nitrogen

treatments. We added nitrogen (ammonium nitrate) and

phosphate (superphosphate to aid in nitrogen uptake) five

times during the course of the Spartina growing season

(24May, 11 June, 24 June, 5 July, and 30 July 2002) in the

following manner: control plots received no nutrient

addition, low addition plots received 8 g/m2 ammonium

nitrate and 2.75 g/m2 superphosphate, and high addition

plots received 45 g/m2 ammonium nitrate and 15 g/m2

superphosphate for each date. In this study, we focus on

N rather than P inputs because Spartina marshes are N-

limited (Mendelssohn 1979a, b) and N-limitation has

been shown to have a greater impact than P-limitation for

Spartina consumers (Huberty and Denno 2006b).

Arthropod and plant samples

For each plot, we assessed arthropod density and

diversity four times during the growing season (16 June,

27 June, 12 July, and 12 August 2002); we used a D-vac

suction sampler (Rincon-Vitova Insectaries, Ventura,

California, USA) with a large suction head (0.093 m2),

and we sampled each plot by placing the head in two

locations within the plot for two five-second periods. We

stored all of the arthropods that we collected from the D-

vac samples in ethanol and later sorted, counted, and

identified all individuals to either genus or species with the

assistance of taxonomic experts (see Acknowledgments).

To measure treatment effects on the nitrogen and

carbon content of Spartina, we collected plant snips (15–

20 Spartina culms per plot) at the time of arthropod

sampling, dried them in a drying oven at 608C for three

days, ground them in a Wiley mill, and then sent our

plant samples to the Cornell Stable Isotope Laboratory

for analyses (information available online).8 We mea-

sured plant biomass and height near the end of the

growing season (15 August) in 0.047-m2 quadrats

(Denno et al. 2002) by sorting the quadrat samples into

live and dead plant material and measuring the height of

living culms. For the live plant material, we washed it

with deionized water, dried it in a drying oven at 608C

for three days, and then weighed it.

Statistical analyses

Due to the fact that our plant variables were likely

correlated, we assessed treatment effects on plant

nitrogen, C:N ratio, plant height, and biomass with a

MANOVA. We square-root transformed arthropod

species richness and abundance data to meet normality

and equality of variance assumptions, then analyzed

these data using a repeated-measures ANOVA with

fertilization level as the between-subjects factor and time

as the within-subjects factor. Because response variables

from consecutive time periods may be highly correlated

relative to response variables from nonconsecutive time

periods, we specifically assigned the variance/covariance

structure in our repeated-measures analysis to account

for correlations among response variables that were

closer together in time. We used separate one-way

ANOVAs with a sequential Bonferroni for multiple

comparisons in order to test for differences among

treatments for each time period.

After we examined the effects of fertilization treat-

ment on arthropod richness, we investigated the factors

that may account for this relationship. We explored the

relationship between arthropod diversity and plant

production for the different trophic groups (i.e.,

herbivores, detritivores, predators, parasitoids, and

algivores). If increasing plant production (biomass)

results in a greater diversity and abundance of feeding

niches (Moran 1980, Lawton 1983, Siemann 1998,

Haddad et al. 2000), we should find an increase in

species richness across trophic groups. Even though we

have three treatment levels (control, low addition, and

high addition), we had enough variation in production

such that we were able to examine the relationship

between plant production and arthropod diversity using

linear regression. To determine whether the relationship

between plant production and arthropod diversity was

monotonically increasing or dome-shaped, we included

linear and quadratic terms in our regression model. We

then examined the improvement in fit using a quadratic

term with Akaike’s Information Criterion (AIC). We

performed regression analyses with a sequential Bonfer-

roni correction to account for previous comparisons of

species richness and abundance. To test whether an

increase in species richness for each trophic group was

driven by an increase in trophic abundance, we

performed individual-based rarefaction (Gotelli and

Colwell 2001). Rarefaction curves were generated by

repeatedly resampling the average number of species

represented in a sample from a pool of 14 samples for

each treatment type (control, low addition, and high8 hhttp://www.cobsil.com/index.phpi
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addition). This resampling procedure allowed us to

generate the expected number of species recorded (Sobs

or Mao Tau) with an increasing number of individuals

on a per sample basis.

In addition to impacts on species richness, changes in

production may also impact species composition. We

therefore examined arthropod species composition

across the different nitrogen manipulation treatments

using NMDS (nonmetric multidimensional scaling),

which is a robust ordination technique for community

data that compares differences in species composition

among plots (Minchin 1987). We used the overall

abundance of each species across all time periods for

our analysis, so time was not included as a factor. By

summing across time periods, we were able to examine

patterns of species assortment among our treatments

that were robust to seasonal changes in species

abundance through time. We used the ordination

program DECODA (Database for Ecological Commu-

nity Data; Minchin 2001) to create a dissimilarity matrix

among treatments using the Bray-Curtis dissimilarity

coefficient (Faith et al. 1987) and then tested for

differences in community composition among treat-

ments using ANOSIM (analysis of similarity; Warwick

et al. 1990). We determined the percentage contribution

that each arthropod species made to the overall
dissimilarity among nitrogen treatments using similarity

percentages (SIMPER; Clarke and Warwick 2001). We
determined the maximum correlation between host plant

biomass per plot and the configuration of points (i.e.,
the arthropod community found within the same plots)
using vector analysis (Minchin 1987, Faith and Norris

1989). If we found differences in species composition as
production increased, this could be explained by the

addition of rare species (Abrams 1995). We therefore
examined the number of species in each plot that

accounted for ,1% of overall arthropod abundance
and compared differences in the number of rare species

across fertilization treatments using a one-way ANOVA
for each trophic group (herbivores, predators, parasit-

oids, and detritivores).

RESULTS

Effects of plant production on arthropod abundance,

diversity, and composition

We found a significant effect of fertilization level on

live Spartina biomass/m2, plant percentage nitrogen,
C:N ratio, and plant height (Wilks’ k ¼ 0.389, F6,74 ¼
50.21, P , 0.001; Appendix B). Biomass increased in
low and high addition treatments, by 33% and 52%,

respectively, relative to controls. Importantly, fertiliza-
tion did not change plant species composition and

Spartina remained a monoculture even with increased
available nitrogen.

We found a significant increase in arthropod species
richness in response to both nitrogen addition (F2,39 ¼
23.878, P , 0.001) and sampling date (F3, 117¼31.039, P
, 0.001), but no interaction between nitrogen addition

and sampling date (F6, 117 ¼ 0.986, P ¼ 0.438; Fig. 1).
Species richness in low and high addition plots

increased, by 13% and 23%, respectively, relative to
controls. Similarly, we found a significant increase in

arthropod abundance with nitrogen addition (F2,39 ¼
8.487, P ¼ 0.001; Fig. 1) and sampling date (F3, 117 ¼
49.873, P , 0.001), but no interaction between nitrogen

addition and sampling date (F6, 117 ¼ 0.517, P ¼ 0.718).
Arthropod abundance increased in low and high

addition plots, by 38% and 54%, respectively, relative
to controls.

We found a linear, positive relationship between plant
biomass and species richness, for four major arthropod

trophic groups: herbivores (R2¼ 0.282, F1,40¼ 15.72, P
, 0.001), detritivores (R2 ¼ 0.445, F1,40 ¼ 33.34, P ,

0.001), predators (R2¼ 0.385, F1,40¼ 25.07, P , 0.001),
and parasitoids (R2 ¼ 0.225, F1,40 ¼ 11.64, P , 0.001;

Fig. 2). Plant biomass, however, did not affect the
species richness of algivores (R2¼0.046, F1,40¼1.92, P¼
0.174; Fig. 2). Moreover, we did not find an improve-
ment in fit using regressions that included a quadratic

term to describe the relationship between biomass and
species richness for each of the trophic groups (Appen-

dix C). Using individual-based rarefaction curves, we

FIG. 1. Effects of three levels of nitrogen addition (control,
low, and high) on (A) species richness and (B) abundance of
arthropods associated with Spartina alterniflora in a salt marsh
near Tuckerton, New Jersey, USA (all values are means 6 SE).
Richness is measured as the actual number of species. An
asterisk indicates significant differences (P , 0.05) among
treatments within a time period.
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found that greater herbivore species richness in fertil-

ization treatments was driven by an increase in

arthropod abundance, but this relationship disappeared

when we standardized species richness for the number of

individuals found in a plot (Appendix D). This result

indicated that greater herbivore diversity in fertilization

plots was due to an increase in plant resources. Notably,

species richness for detritivores, predators, and parasit-

oids remained elevated in fertilization plots relative to

controls even when we standardized for the number of

individuals found in a plot (Appendix D).

We found that nitrogen addition significantly altered

arthropod community composition for all three nitrogen

addition treatments (ANOSIM R ¼ 0.4156, P , 0.001;

Fig. 3). We used vector analysis to examine the

relationship between plant biomass (production) and

the NMDS configuration and found a significant

correlation (vector maximum R ¼ 0.7963, P , 0.001),

which suggests that arthropod community composition

responds to a gradient of plant biomass. Additionally,

using SIMPER, we found that species from a broad

array of trophic groups contributed to compositional

differences among treatment groups. The percentage

contribution to compositional differences among treat-

ments was: 3–33% for herbivores (Prokelisia marginata,

P. dolus, and Delphacodes penedetecta), 1–3% for

algivores (Orchestia grillus and Ameronothrus marinus),

2–3% for saprophages (Incertella sp.), 3–12% for web-

building spiders (Gramminota trivittata, Eperigone sp.),

1–3% for specialist predators (e.g., Tytthus vagus), 1%

for generalist predators (e.g., Pentacora sp.), 1% for

intraguild predators (Pardosa littoralis), and 1% for

third- (Leptopilina sp.) and fourth- (e.g., Baeus sp.)

trophic-level parasitoids (Appendix E). Furthermore,

each of the species that contributed to compositional

differences among treatment groups appeared to be

positively affected by nitrogen addition (Appendix F).

Finally, in low- and high-addition plots, we found an

11–39% increase in the number of rare predators, a 60–

67% increase in the number of rare parasitoids, and a

60–71% increase in the number of rare detritivores

relative to controls, but no change in the number of rare

herbivores (Appendix G).

DISCUSSION

We predicted and found that nitrogen addition

significantly increased plant biomass and percentage

nitrogen, which in turn enhanced both arthropod species

richness and abundance. Higher plant production

(biomass) was correlated with an increase in herbivore,

predator, parasitoid, and detritivore diversity. Previous

studies have found that fertilization leads to changes in

plant species diversity and composition, but in this

experiment and a four-year nutrient press experiment

(S. M. Murphy and G. M. Wimp, unpublished data),

Spartina remains a monoculture despite continued

fertilization. Our results demonstrate that in a natural

monoculture, where enhanced production does not alter

plant diversity or composition, greater production leads

to increases in animal diversity.

Fertilization not only affected arthropod species

richness and abundance, but also altered arthropod

species composition (Fig. 3). Notably, changes in

arthropod composition occurred in both the low- and

high-addition treatments relative to controls, which

indicates that even relatively low inputs of nutrients to

salt marshes may restructure the associated arthropod

community. Although changes in composition were

driven largely by herbivores, species of detritivores,

algivores, parasitoids, and web-building spiders also

accounted for changes in arthropod community com-

position among fertilization treatments (Appendix E).

We examined trophic-level responses to fertilization

and found an increase in species richness with greater

plant production. If greater plant production led to an

increase in arthropod consumer diversity, we predicted

FIG. 2. Relationship between primary pro-
duction (biomass) and species richness for
herbivores, detritivores, predators, and parasit-
oids associated with Spartina alterniflora. Rich-
ness is measured as the actual number of species.
Biomass includes only Spartina; the aboveground
dry mass was measured for the entire plant.
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that such a response was likely driven by two

mechanisms that might act singly or in concert: (1) an

increase in the abundance of rare species and/or (2) an

increase in the density of arthropods that the habitat is

able to support. For herbivores, the increase in species

richness could not be explained by an increase in the

number of rare herbivore species. Instead, the increase

in herbivore species richness with plant production was

driven by herbivore abundance (Appendix D). Spartina

has a relatively high silica content and grows under

high levels of salt stress, both of which limit the

herbivore community to a group of specialized phloem-

feeders (Denno and Roderick 1990, Bertness 1991,

Norris and Hackney 1999), and may constrain the

number of herbivorous species that can feed on

Spartina. Although the high silica content of Spartina

likely constrains herbivore diversity, similar bottom-up

constraints, such as plant trichomes and secondary

chemicals, affect herbivores across a wide array of

systems (Lambert et al. 1995, Becerra 1997, Mutikainen

et al. 2000).

Primary consumers, such as herbivores, were not the

only feeding group affected by plant production; we also

found an increase in both predator and parasitoid

species richness with an increase in plant production.

Indeed, predator diversity exhibited one of the strongest

responses to increased plant production (Fig. 2).

However, predator species richness was not driven

solely by the well-established relationship between

abundance and species richness (Bunge and Fitzpatrick

1993, Srivastava and Lawton 1998); rarefied species

accumulation curves showed that predator species

richness was greatest in high fertilization plots, even

after predator abundance was taken into account

(Appendix D). Previous studies in the same system have

found that fertilization leads to a decrease in emigration

and an increase in reproduction for the dominant

predator species (Denno et al. 2002). Additionally, by

increasing prey diversity and abundance, the increase in

plant production may have expanded the diversity of

predator and parasitoid feeding niches in much the same

way that plant production increases niche diversity for

herbivores (Kneitel and Miller 2002). Specifically,

generalist predators often thrive in low-production

habitats and because generalists overlap in resource

use, the community supports fewer overall species

(Srivastava and Lawton 1998). However, when resourc-

es are more abundant in high-production habitats, both

generalist and specialist species may coexist, which leads

to greater overall species richness (Srivastava and

Lawton 1998). In support of previous findings, we

found an increase in the number of rare predator and

parasitoid species with higher levels of plant production

(Appendix G). Specifically, although generalist preda-

tors were numerically dominant in low production

habitats (Eperigone sp., G. trivittata), specialist preda-

tors (T. vagus) and parasitoids (Baeus sp., Leptopilina

sp.) became increasingly more abundant in high-

production habitats (Appendix F). Notably, whether

increased species richness in relation to production was

caused by greater arthropod abundance or rare species

(e.g., Yee and Juliano 2007, Yee et al. 2007) depended

on the trophic level examined. Greater herbivore species

richness with higher production was due to an increase

in herbivore abundance, but greater species richness for

detritivores, predators, and parasitoids was due to an

increase in the number of rare species.

Our study demonstrates that plant production,

without an associated change in plant composition or

diversity, increases arthropod species richness and

abundance, and alters community composition. By

examining the entire arthropod community, we were

able to determine that each trophic group responds to

greater production, but the factors that explain such an

increase vary according to trophic group. These results

are not only important to our understanding of the

relationship between production and consumer diversi-

ty, but also because numerous terrestrial systems are

currently experiencing an increase in allocthonous

nitrogen input from anthropogenic sources (Vitousek

et al. 1997). For salt-marsh habitats in particular,

marshes that have not been directly destroyed by human

FIG. 3. Composition of the arthropod community associ-
ated with Spartina alterniflora subjected to three levels of
nitrogen addition (control, low, and high). The composition of
the arthropod community differed significantly among the three
nitrogen treatments. Compositional dissimilarity was based on
100 different arthropod species (Appendix A). Shown is the
two-dimensional representation of the arthropod community
found in 42 nitrogen treatment plots. Vector analysis (arrow)
indicates that differences in arthropod community composition
were correlated with Spartina biomass. Dissimilarities were
computed between all plots, and the NMDS (nonmetric
multidimensional scaling) ordination is a representation of
these dissimilarities in Euclidean two-dimensional space.
ANOSIM stands for analysis of similarity.
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development have been drastically altered by nitrogen

enrichment (Bertness et al. 2002, Valiela et al. 2004).

Previous studies have found that anthropogenic increas-

es in nitrogen runoff to salt marshes can alter the

structure of the vegetation community (Bertness et al.

2002, 2004); our results demonstrate that nutrient

addition to these systems affects higher trophic level

consumers as well. Even though arthropod species

richness was greater in high production plots, by altering

species composition, nitrogen enrichment may feed back

to affect ecosystem processes through arthropod con-

sumer effects on standing crop biomass and nutrient

cycling. Future experiments should therefore aim to test

the separate and combined effects of plant production

and plant diversity on consumers using factorial

experiments, as well as the long-term effects of nutrient

loading on animal communities.
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